

Chapter 3

Deeper into text

Despite how sophisticated graphical user interfaces have become, text remains the backbone of most

applications. Yet text is potentially one of the most complex visual objects because it carries baggage

of hundreds of years of typography. The primary consideration is that text must be readable. This re-

quires that text not be too small, yet text mustn’t be so large that it hogs a lot of space on the screen.

For these reasons, the subject of text is continued in several subsequent chapters, most notably

Chapter 5, “Dealing with sizes.” Very often, Xamarin.Forms programmers define font characteristics in

styles, which are the subject of Chapter 12.

Wrapping paragraphs

Displaying a paragraph of text is as easy as displaying a single line of text. Just make the text long

enough to wrap into multiple lines:

public class BaskervillesPage : ContentPage

{

 public BaskervillesPage()

 {

 Content = new Label

 {

 VerticalOptions = LayoutOptions.Center,

 Text =

 "Mr. Sherlock Holmes, who was usually very late in " +

 "the mornings, save upon those not infrequent " +

 "occasions when he was up all night, was seated at " +

 "the breakfast table. I stood upon the hearth-rug " +

 "and picked up the stick which our visitor had left " +

 "behind him the night before. It was a fine, thick " +

 "piece of wood, bulbous-headed, of the sort which " +

 "is known as a \u201CPenang lawyer.\u201D Just " +

 "under the head was a broad silver band, nearly an " +

 "inch across, \u201CTo James Mortimer, M.R.C.S., " +

 "from his friends of the C.C.H.,\u201D was engraved " +

 "upon it, with the date \u201C1884.\u201D It was " +

 "just such a stick as the old-fashioned family " +

 "practitioner used to carry\u2014dignified, solid, " +

 "and reassuring."

 };

 Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

 }

}

Chapter 3 Deeper into text 43

Notice the use of embedded Unicode codes for opened and closed “smart quotes” (\u201C and

\u201D) and the em dash (\u2014). Padding has been set for 5 units around the page to avoid the text

butting up against the edges of the screen, but the VerticalOptions property has been used as well

to vertically center the entire paragraph on the page:

For this paragraph of text, setting HorizontalOptions to Start, Center, or End on iOS or

Windows Phone will shift the entire paragraph horizontally slightly to the left, center, or right. (Android

works a little differently for multiple lines of text.) The shifting is only slight because the width of the

paragraph is the width of the longest line of text. Since word wrapping is governed by the page width

(minus the padding), the paragraph likely occupies just slightly less width than the width available for it

on the page.

But setting the HorizontalTextAlignment property of the Label has a much more profound

effect: Setting this property affects the alignment of the individual lines. A setting of TextAlign-

ment.Center will center all the lines of the paragraph, and TextAlignment.Right aligns them all at

the right. You can use HorizontalOptions in addition to HorizontalTextAlignment to shift the

entire paragraph slightly to the center or the right.

However, after you’ve set VerticalOptions to Start, Center, or End, any setting of Vertical-

TextAlignment has no effect.

Label defines a LineBreakMode property that you can set to a member of the LineBreakMode

enumeration if you don’t want the text to wrap or to select truncation options.

There is no property to specify a first-line indent for the paragraph, but you can add one of your

own with space characters of various types, such as the em space (Unicode \u2003).

Chapter 3 Deeper into text 44

You can display multiple paragraphs with a single Label view by ending each paragraph with one

or more line feed characters (\n). However, a better approach is to use the string returned from the

Environment.NewLine static property. This property returns “\n” on iOS and Android devices and

“\r\n” on all Windows and Windows Phone devices. But rather than embedding line feed characters to

create paragraphs, it makes more sense to use a separate Label view for each paragraph, as will be

demonstrated in Chapter 4, “Scrolling the stack.”

The Label class has lots of formatting flexibility. As you’ll see shortly, properties defined by Label

allow you to specify a font size or bold or italic text, and you can also specify different text formatting

within a single paragraph.

Label also allows specifying color, and a little experimentation with color will demonstrate the pro-

found difference between the HorizontalOptions and VerticalOptions properties and the Hori-

zontalTextAlignment and VerticalTextAlignment properties.

Text and background colors

As you’ve seen, the Label view displays text in a color appropriate for the device. You can override

that behavior by setting two properties, named TextColor and BackgroundColor. Label itself de-

fines TextColor, but it inherits BackgroundColor from VisualElement, which means that Page

and Layout also have a BackgroundColor property.

You set TextColor and BackgroundColor to a value of type Color, which is a structure that de-

fines 17 static fields for obtaining common colors. You can experiment with these properties with the

Greetings program from the previous chapter. Here are two of these colors used in conjunction with

HorizontalTextAlignment and VerticalTextAlignment to center the text:

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalTextAlignment = TextAlignment.Center,

 BackgroundColor = Color.Yellow,

 TextColor = Color.Blue

 };

 }

}

The result might surprise you. As these screenshots illustrate, the Label actually occupies the entire

area of the page (including underneath the iOS status bar), and the HorizontalTextAlignment and

VerticalTextAlignment properties position the text within that area:

Chapter 3 Deeper into text 45

In contrast, here’s some code that colors the text the same but instead centers the text using the

HorizontalOptions and VerticalOptions properties:

public class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 BackgroundColor = Color.Yellow,

 TextColor = Color.Blue

 };

 }

}

Now the Label occupies only as much space as required for the text, and that’s what’s positioned in

the center of the page:

Chapter 3 Deeper into text 46

The default value of HorizontalOptions and VerticalOptions is not LayoutOptions.Start,

as the default appearance of the text might suggest. The default value is instead LayoutOp-

tions.Fill. This is the setting that causes the Label to fill the page. The default Horizontal-

TextAlignment and VerticalTextAlignment value of TextAlignment.Start is what caused the

text to be positioned at the upper-left in the first version of the Greetings program in the previous

chapter.

You can combine various settings of HorizontalOptions, VerticalOptions, HorizontalText-

Alignment, and VerticalTextAlignment for different effects.

You might wonder: What are the default values of the TextColor and BackgroundColor proper-

ties, because the default values result in different colors for the different platforms?

The default value of TextColor and BackgroundColor is actually a special color value named

Color.Default, which does not represent a real color but instead is used to reference the text and

background colors appropriate for the particular platform.

Let’s explore color in more detail.

The Color structure

Internally, the Color structure stores colors in two different ways:

 As red, green, and blue (RGB) values of type double that range from 0 to 1. Read-only proper-

ties named R, G, and B expose these values.

Chapter 3 Deeper into text 47

 As hue, saturation, and luminosity values of type double, which also range from 0 to 1. These

values are exposed with read-only properties named Hue, Saturation, and Luminosity.

The Color structure also supports an alpha channel for indicating degrees of opacity. A read-only

property named A exposes this value, which ranges from 0 for transparent to 1 for opaque.

All the properties that define a color are read-only. In other words, once a Color value is created, it

is immutable.

You can create a Color value in one of several ways. The three constructors are the easiest:

 new Color(double grayShade)

 new Color(double r, double g, double b)

 new Color(double r, double g, double b, double a)

Arguments can range from 0 to 1. Color also defines several static creation methods, including:

 Color.FromRgb(double r, double g, double b)

 Color.FromRgb(int r, int g, int b)

 Color.FromRgba(double r, double g, double b, double a)

 Color.FromRgba(int r, int g, int b, int a)

 Color.FromHsla(double h, double s, double l, double a)

The two static methods with integer arguments assume that the values range from 0 to 255, which

is the customary representation of RGB colors. Internally, the constructor simply divides the integer val-

ues by 255.0 to convert to double.

Watch out! You might think that you’re creating a red color with this call:

Color.FromRgb(1, 0, 0)

However, the C# compiler will assume that these arguments are integers. The integer FromRgb method

will be invoked, and the first argument will be divided by 255.0, with a result that is nearly zero. If you

want to invoke the method that has double arguments, be explicit:

Color.FromRgb(1.0, 0, 0)

Color also defines static creation methods for a packed uint format and a hexadecimal format in a

string, but these are used less frequently.

The Color structure also defines 17 public static read-only fields of type Color. In the table below,

the integer RGB values that the Color structure uses internally to define these fields are shown to-

gether with the corresponding Hue, Saturation, and Luminosity values, somewhat rounded for

purposes of clarity:

Chapter 3 Deeper into text 48

Color Fields Color Red Green Blue Hue Saturation Luminosity

White 255 255 255 0 0 1.00

Silver 192 192 192 0 0 0.75

Gray 128 128 128 0 0 0.50

Black 0 0 0 0 0 0

Red 255 0 0 1.00 1 0.50

Maroon 128 0 0 1.00 1 0.25

Yellow 255 255 0 0.17 1 0.50

Olive 128 128 0 0.17 1 0.25

Lime 0 255 0 0.33 1 0.50

Green 0 128 0 0.33 1 0.25

Aqua 0 255 255 0.50 1 0.50

Teal 0 128 128 0.50 1 0.25

Blue 0 0 255 0.67 1 0.50

Navy 0 0 128 0.67 1 0.25

Pink 255 102 255 0.83 1 0.70

Fuchsia 255 0 255 0.83 1 0.50

Purple 128 0 128 0.83 1 0.25

With the exception of Pink, you might recognize these as the color names supported in HTML. An

18th public static read-only field is named Transparent, which has R, G, B, and A properties all set to

zero.

When people are given an opportunity to interactively formulate a color, the HSL color model is of-

ten more intuitive than RGB. The Hue cycles through the colors of the visible spectrum (and the rain-

bow) beginning with red at 0, green at 0.33, blue at 0.67, and back to red at 1.

The Saturation indicates the degree of the hue in the color, ranging from 0, which is no hue at all

and results in a gray shade, to 1 for full saturation.

The Luminosity is a measure of lightness, ranging from 0 for black to 1 for white.

Color-selection programs in Chapter 15, “The interactive interface,” let you explore the RGB and HSL

models more interactively.

The Color structure includes several interesting instance methods that allow creating new colors

that are modifications of existing colors:

 AddLuminosity(double delta)

 MultiplyAlpha(double alpha)

 WithHue(double newHue)

 WithLuminosity(double newLuminosity)

 WithSaturation(double newSaturation)

Finally, Color defines two special static read-only properties of type Color:

 Color.Default

 Color.Accent

Chapter 3 Deeper into text 49

The Color.Default property is used extensively within Xamarin.Forms to define the default color of

views. The VisualElement class initializes its BackgroundColor property to Color.Default, and

the Label class initializes its TextColor property as Color.Default.

However, Color.Default is a Color value with its R, G, B, and A properties all set to –1, which

means that it’s a special “mock” value that means nothing in itself but indicates that the actual value is

platform specific.

For Label and ContentPage (and most classes that derive from VisualElement), the

BackgroundColor setting of Color.Default means transparent. The background color you see on

the screen is the background color of the page. The BackgroundColor property of the page has a de-

fault setting of Color.Default, but that value means something different on the various platforms.

The meaning of Color.Default for the TextColor property of Label is also device dependent.

Here are the default color schemes implied by the BackgroundColor of the page and the

TextColor of the Label:

Platform Color Scheme

iOS Dark text on a light background

Android Light text on a dark background

UWP Dark text on a light background

Windows 8.1 Light text on a dark background

Windows Phone 8.1 Light text on a dark background

On Android, Windows, and Windows Phone devices, you can change this color scheme for your appli-

cation. See the next section.

You have a couple of possible strategies for working with color: You can choose to do your

Xamarin.Forms programming in a very platform-independent manner and avoid making any assump-

tions about the default color scheme of any phone. Or, you can use your knowledge about the color

schemes of the various platforms and use Device.OnPlatform to specify platform-specific colors.

But don’t try to just ignore all the platform defaults and explicitly set all the colors in your applica-

tion to your own color scheme. This probably won’t work as well as you hope because many views use

other colors that relate to the color theme of the operating system but that are not exposed through

Xamarin.Forms properties.

One straightforward option is to use the Color.Accent property for an alternative text color. On

the iPhone and Android platforms, this is a color that is visible against the default background but is

not the default text color. On the Windows platforms, it’s a color selected by the user as part of the

color theme.

You can make text semitransparent by setting TextColor to a Color value with an A property less

than 1. However, if you want a semitransparent version of the default text color, use the Opacity

property of the Label instead. This property is defined by the VisualElement class and has a default

value of 1. Set it to values less than 1 for various degrees of transparency.

Chapter 3 Deeper into text 50

Changing the application color scheme

When targeting your application for Android, Windows, and Windows Phone, it is possible to change

the color scheme for the application. In this case, the settings of Color.Default for the Back-

groundColor of the ContentPage and the TextColor property of the Label will have different

meanings.

There are several ways to set color schemes in Android, but the simplest requires only a single at-

tribute setting in the AndroidManifest.xml file in the Properties folder of the Android project. That file

normally looks like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="15" />

 <application>

 </application>

</manifest>

Add the following attribute to the application tag:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="15" />

 <application android:theme="@style/android:Theme.Holo.Light">

 </application>

</manifest>

Now your Android application will display dark text on a light background.

For the three Windows and Windows Phone projects, you’ll need to change the App.xaml file lo-

cated in the particular project.

In the UWP project, the default App.xaml file looks like this:

<Application

 x:Class="Baskervilles.UWP.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Baskervilles.UWP"

 RequestedTheme="Light">

</Application>

That RequestedTheme attribute is what gives the UWP application a color scheme of dark text on a

light background. Change it to Dark for light text on a dark background. Remove the Requested-

Theme attribute entirely to allow the user’s setting to determine the color scheme.

The App.xaml file for the Windows Phone 8.1 and Windows 8.1 projects is similar, but the Request-

edTheme attribute is not included by default. Here’s the App.xaml file in the WinPhone project:

<Application

 x:Class="Baskervilles.WinPhone.App"

Chapter 3 Deeper into text 51

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Baskervilles.WinPhone">

</Application>

By default, the color scheme is determined by the user’s setting. You can include a RequestedTheme

attribute and set it to Light or Dark to override the user’s preference and take control of the color

scheme.

By setting RequestedTheme on your Windows Phone and Windows projects, your application

should have complete knowledge of the underlying color schemes on all the platforms.

Font sizes and attributes

By default, the Label uses a system font defined by each platform, but Label also defines several

properties that you can use to change this font. Label is one of only two classes with these font-re-

lated properties; Button is the other.

The properties that let you change this font are:

 FontFamily of type string

 FontSize of type double

 FontAttributes of type FontAttributes, an enumeration with three members: None, Bold,

and Italic.

There is also a Font property and corresponding Font structure, but this is deprecated and should not

be used.

The hardest of these to use is FontFamily. In theory you can set it to a font family name such as

“Times Roman,” but it will work only if that particular font family is supported on the particular plat-

form. For this reason, you’ll probably use FontFamily in connection with Device.OnPlatform, and

you’ll need to know each platform’s supported font family names.

The FontSize property is a little awkward as well. You need a number that roughly indicates the

height of the font, but what numbers should you use? This is a thorny issue, and for that reason, it’s

relegated to Chapter 5, “Dealing with sizes,” when the tools to pick a good font size will become avail-

able.

Until then, however, the Device class helps out with a static method called GetNamedSize. This

method requires a member of the NamedSize enumeration:

 Default

 Micro

Chapter 3 Deeper into text 52

 Small

 Medium

 Large

GetNamedSize also requires the type of the class that you’re sizing with this font size, and that ar-

gument will be either typeof(Label) or typeof(Button). You can also use an instance of Label or

Button itself rather than the Type, but this option is often less convenient.

As you’ll see later in this chapter, the NamedSize.Medium member does not necessarily return the

same size as NamedSize.Default.

FontAttributes is the least complicated of the three font-related properties to use. You can spec-

ify Bold or Italic or both, as this little snippet of code (adapted from the Greetings program from

the previous chapter) demonstrates:

class GreetingsPage : ContentPage

{

 public GreetingsPage()

 {

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!",

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

 };

 }

}

Here it is on the three platforms:

Chapter 3 Deeper into text 53

The Windows 10 Mobile screen is not quite wide enough to display the text in a single line.

Formatted text

As you’ve seen, Label has a Text property that you can set to a string. But Label also has an alterna-

tive FormattedText property that constructs a paragraph with nonuniform formatting.

The FormattedText property is of type FormattedString, which has a Spans property of type

IList, a collection of Span objects. Each Span object is a uniformly formatted chunk of text

that is governed by six properties:

 Text

 FontFamily

 FontSize

 FontAttributes

 ForegroundColor

 BackgroundColor

Here’s one way to instantiate a FormattedString object and then add Span instances to its Spans

collection property:

public class VariableFormattedTextPage : ContentPage

{

Chapter 3 Deeper into text 54

 public VariableFormattedTextPage()

 {

 FormattedString formattedString = new FormattedString();

 formattedString.Spans.Add(new Span

 {

 Text = "I "

 });

 formattedString.Spans.Add(new Span

 {

 Text = "love",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold

 });

 formattedString.Spans.Add(new Span

 {

 Text = " Xamarin.Forms!"

 });

 Content = new Label

 {

 FormattedText = formattedString,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 };

 }

}

As each Span is created, it is directly passed to the Add method of the Spans collection. Notice that

the Label is given a FontSize of NamedSize.Large, and the Span with the Bold setting is also ex-

plicitly given that same size. When a Span is given a FontAttributes setting, it does not inherit the

FontSize setting of the Label.

Alternatively, it’s possible to initialize the contents of the Spans collection by following it with a pair

of curly braces. Within these curly braces, the Span objects are instantiated. Because no method calls

are required, the entire FormattedString initialization can occur within the Label initialization:

public class VariableFormattedTextPage : ContentPage

{

 public VariableFormattedTextPage()

 {

 Content = new Label

 {

 FormattedText = new FormattedString

 {

 Spans =

 {

 new Span

 {

 Text = "I "

Chapter 3 Deeper into text 55

 },

 new Span

 {

 Text = "love",

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold

 },

 new Span

 {

 Text = " Xamarin.Forms!"

 }

 }

 },

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

 };

 }

}

This is the version of the program that you’ll see in the collection of sample code for this chapter. Re-

gardless of which approach you use, here’s what it looks like:

You can also use the FormattedText property to embed italic or bold words within an entire para-

graph, as the VariableFormattedParagraph program demonstrates:

public class VariableFormattedParagraphPage : ContentPage

{

 public VariableFormattedParagraphPage()

 {

Chapter 3 Deeper into text 56

 Content = new Label

 {

 FormattedText = new FormattedString

 {

 Spans =

 {

 new Span

 {

 Text = "\u2003There was nothing so "

 },

 new Span

 {

 Text = "very",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = " remarkable in that; nor did Alice " +

 "think it so "

 },

 new Span

 {

 Text = "very",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = " much out of the way to hear the " +

 "Rabbit say to itself \u2018Oh " +

 "dear! Oh dear! I shall be too late!" +

 "\u2019 (when she thought it over " +

 "afterwards, it occurred to her that " +

 "she ought to have wondered at this, " +

 "but at the time it all seemed quite " +

 "natural); but, when the Rabbit actually "

 },

 new Span

 {

 Text = "took a watch out of its waistcoat-pocket",

 FontAttributes = FontAttributes.Italic

 },

 new Span

 {

 Text = ", and looked at it, and then hurried on, " +

 "Alice started to her feet, for it flashed " +

 "across her mind that she had never before " +

 "seen a rabbit with either a waistcoat-" +

 "pocket, or a watch to take out of it, " +

 "and, burning with curiosity, she ran " +

 "across the field after it, and was just " +

 "in time to see it pop down a large " +

 "rabbit-hold under the hedge."

 }

 }

Chapter 3 Deeper into text 57

 },

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

The paragraph begins with an em space (Unicode \u2003) and contains so-called smart quotes

(\u201C and \u201D), and several words are italicized:

You can persuade a single Label to display multiple lines or paragraphs with the insertion of end-

of-line characters. This is demonstrated in the NamedFontSizes program. Multiple Span objects are

added to a FormattedString object in a foreach loop. Each Span object uses a different

NamedFont value and also displays the actual size returned from Device.GetNamedSize:

public class NamedFontSizesPage : ContentPage

{

 public NamedFontSizesPage()

 {

 FormattedString formattedString = new FormattedString();

 NamedSize[] namedSizes =

 {

 NamedSize.Default, NamedSize.Micro, NamedSize.Small,

 NamedSize.Medium, NamedSize.Large

 };

 foreach (NamedSize namedSize in namedSizes)

 {

 double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

Chapter 3 Deeper into text 58

 formattedString.Spans.Add(new Span

 {

 Text = String.Format("Named Size = {0} ({1:F2})",

 namedSize, fontSize),

 FontSize = fontSize

 });

 if (namedSize != namedSizes.Last())

 {

 formattedString.Spans.Add(new Span

 {

 Text = Environment.NewLine + Environment.NewLine

 });

 }

 }

 Content = new Label

 {

 FormattedText = formattedString,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

Notice that a separate Span contains the two platform-specific end-of-line strings to space the individ-

ual lines. This ensures that the line spacing is based on the default font size rather than the font size

just displayed:

Chapter 3 Deeper into text 59

These are not pixel sizes! As with the height of the iOS status bar, it’s best to refer to these sizes only

vaguely as some kind of “units.” Some additional clarity is coming in Chapter 5.

The Default size is generally chosen by the operating system, but the other sizes were chosen by

the Xamarin.Forms developers. On iOS, Default is the same as Medium, but on Android Default is

the same as Small, and on Windows 10 Mobile, Default is smaller than Micro.

The sizes on the iPad and Windows 10 are the same as the iPhone and Windows 10 Mobile, respec-

tively. However, the sizes on the Windows 8.1 and Windows Phone 8.1 platforms show more of

discrepancy:

Of course, the use of multiple Span objects in a single Label is not a good way to render multiple

paragraphs of text. Moreover, text often has so many paragraphs that it must be scrolled. This is the

job for the next chapter and its exploration of StackLayout and ScrollView.

